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Abstract. For a simple non-relativistic fermion model we show that the Schwinger anomaly 
can be viewed as an effect of the infinite depth of the Dirac sea. 

It is now well known [l-31 that the Dirac sea may be viewed as an origin of the 
Schwinger terms in the commutators of currents. Actually, it is the infinite depth of 
the Dirac sea that proves to be the source of anomalous terms. Mathematically, this 
phenomenon is quite natural because filling in the Dirac sea implies the transition to 
be a non-equivalent representation of canonical anticommutation relations. The aim 
of the present paper is to study all this machinery in detail. My interest in this field 
was stimulated by some problems in quantum integrable systems where filling in the 
Dirac sea is also claimed to produce Schwinger terms [4]. 

We choose to deal with the simplest model where the phenomenon yet exists. 
Consider a free non-relativistic one-dimensional model of the one-component fermion 
field 

The momenta could even be discrete, which corresponds to a finite box in x space. 
However, I prefer to use continuous momenta because the discretisation does not lead 
to any simplification. The anticommutation relations are standard canonical ones: 

To be a free one, our model must have the Hamiltonian which is bilinear in the 
fields or in the a, a*  operators. For our purpose it is not even necessary to fix the 
Hamiltonian unambiguously. Let it be 

H = dka;a,o(k) (4) I 
with a function w(k) such that in a certain interval w(k)<O. We fix this interval to 
be -A < k < 0. Just here the Dirac sea will reside. A is a positive number which 
eventually will go to +W. 

Anticipating the result of our investigation we can formulate the final answer: the 
Schwinger terms appear if the interval of negative values of w(k) is infinite ( A = c o )  
or, in the discrete version H = x k  wkulak, if the number of k with wk negative is infinite. 
Both cases can be interpeted as the presence of an infinitely deep Dirac sea to fill in. 
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It should be emphasised that the magnitude of w (  k )  is not relevant; only the sign of 
it is. 

Now let us describe the Fock space of the model. The vacuum 10) of the operators 
a, a+, 

q l O )  = 0 ( 5 )  

is a mathematical or false vacuum because it is not the state of the lowest energy. The 
true or  physical vacuum 110) emerges as a result of filling in the Dirac sea. In other 
words, 110) is the vacuum of new operators b, b', 

b h  110) = 0 (6) 
defined by 

= e,( k)bk + (1 - e,( k ) ) b ;  

U:  = e , ( k ) b : +  ( 1  - e,( k ) ) b ,  

where 8 ,( k )  generalises the ordinary 8 function: 
for k > O  
for -.I< k<O 
for k < -,I 

so that 

The operators b, b' obey the canonical anticommutation relations 

[ bk, b;,], = 6 ( k  - k ' ) .  (10) 
In terms of b, b' the Hamiltonain H is positive definite. 

In  what follows we shall study various operators in this new Fock space over the 
vacuum / O ) .  The operators a, ai  when encountered are to be substituted by ( 7 )  with 

finite or  infinite. 
Consider the current (or particle density) 

I ( x )  = $ + ( X ) $ ( X )  (11) 
and  its commutator 

Naively, due to (3), the latter seems to be equal to zero. But we shall see that lcor 
A = m the answer will be quite different: the Schwinger term will appear. How does 
this happen? 

Let us begin by considering the Fourier transform of I ( x ) :  

J --x 

By our convention, we must treat a, a' in terms of b, b' using ( 7 ) .  Rewritten in this 
way, Z(p) is to be denoted by I , ( p )  and reads 

I , ( P ) =  dk[e\(k+p)8,(k)b;+,bI  + e , ( k + p ) ( l -  8,(k))bl+,b: 
X 

- X  

+ ( 1 - 8 1 ( k + P 1) 0 , ( k 1 bk TP bk 
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Two points should be made here. Firstly, for different values of A, I , ( p )  become 
different operators in the same Fock space. Secondly, I , ( p )  is not normal-ordered 
with respect to the b. It consists of four terms, and one of them is not ordered. 
However, operators similar to (13), when non-ordered, can prove not to be the true 
operators in the Fock space. This is due to the infinite interval of k integration. For 
example, jyx dk bkbl is not the true Fock space operator. 

Anticipating the limit A + m, we have to deal with normal-ordered operators. Let 
us introduce the notation : I :  = J (the ordering with respect to b-operators, of course). 
It is easy to obtain (for finite A) 

I \ ( P )  = J , ( p ) + A S ( p )  (15) 

[ I , ( P ) ,  I,(P’)l- = [ J , ( P ) ,  J\(P’)l- =o. (16) 
The derivation of (16) is straightforward. The terms with operators in the normal 

form cancel after a trivial shift of an integration variable. The remaining c-number 
term is equal to 

5 

S ( P + P ’ )  [-xdk d q [ ~ ( k - q - ~ ’ ) ~ ( k + ~ - q ) - ~ ( k - q ) S ( k + p - q - p ‘ ) l  

x [(I  - e,(k+p))e , (k)e(q+p’)( i  - u q ) )  

- m + p ) ( l  -WM - ~ , ( ~ + P ” M I ) I  
(17) 

z 

= S ( P + P ’ )  I-, dk[e , (k) ( l -  @,(k+P)) 

- o , ( k + p ) ( i  - e , ( k ) ) ] = o .  

Up to now, no Schwinger terms exist. 
However, the last line of (17) hints that for A = 0;) the result could be non-zero. 

Consider the limit A + 00 in detail. I , (  p )  does not survive in this limit; it diverges due 
to the A S (  p )  term, whereas lim \+= J,(  p )  is evidently a well defined operator. To find 
it explicitly, one should replace the a in I (  p ) ,  I( p ’ )  by (7) using ordinary 8 functions 
and then perform the normal ordering of the b. The result is 

lim J \ ( p ) = J J , ( p ) =  1 d k [ B ( k ) 8 ( k + p ) b ; + , b , + B ( k + p ) e ( - k ) b : , , b :  
X 

--I 4 - X  

+ 8 ( k ) B ( - k  - p ) b k + , b ~  - O(-k)8(-k-p)b:bk+,]. (18) 

[ J x ( P ) ,  J x ( P ’ ) l -  = - p S ( p + p ‘ )  (19) 

[ J ( x ) ,  J ( Y ) l -  =- S(X--) ’ )  (20) ax 

One can straightforwardly show that [2] 

which corresponds to 

d 

the RHS being the Schwinger term. 
Returning to (19) we observe that 

[ 1-?j lim J , ( p ) ,  Vm -J, J \ ( p ’ ) ] -  = - p S ( p + p ’ )  f 0 

lim \-= [ J \ ( p ) ,  J\(p’)I-  = O .  

(21) 

whereas 

(22) 
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So, taking the product and taking the limit does not commute. This is possible since 
the difference 

JCC(P)-J.,(P) (23) 

does not vanish in the operator sense as A+co.  In fact, this difference is a sum of 
several terms, typical of which are 

- %  - 1  

dk b:+,b; etc. (24) I-, dkb:+,bk [L 

All these terms are of the form j-, dk a( k, p )  with a bilinear operator A and therefore 
vanish in the limit A + CO when sandwiched between two given Fock states. However, 
the norm of an operator like (24) does not go to zero as A + CO. We can conclude that 
the mathematical nature of the Schwinger anomaly consists of the fact that J,, does 
not converge to J ,  in the operator sense when the depth of the Dirac sea goes to infinity. 

Perhaps the most clarifying formula is 

We see that the ‘anomalous’ current JE( p )  differs from the ‘commuting’ one I,( p )  not 
by a mere c-number term AS( p )  as it would if Z,( p )  could exist, but also by a certain 
operator term (the last term in the RHS of (25)). It is just this term that generates 
Schwinger anomalies. It resides deep in the Dirac sea and, as A +  CO, seems to be 
drowned. However, the c-number commutators produced by the A terms do not 
depend on A at all, do not drown, and eventually display themselves in the form of 
anomalies. 
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